OPTIMIZING MOLECULAR DOCKING PROTOCOLS OF PYRROLE CONTAINING MAO-B INHIBITORS THROUGH CORRELATION COEFFICIENTS

Authors

  • Emilio Mateev Department of Pharmaceutical chemistry, Faculty of Pharmacy, Medical University-Sofia
  • Iva Valkova Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia
  • Diana Tzankova Department of Pharmaceutical chemistry, Faculty of Pharmacy, Medical University-Sofia
  • Maya Georgieva Department of Pharmaceutical chemistry, Faculty of Pharmacy, Medical University-Sofia
  • Alexander Zlatkov Department of Pharmaceutical chemistry, Faculty of Pharmacy, Medical University-Sofia

DOI:

https://doi.org/10.12955/pmp.v2.179

Keywords:

ensemble docking, MAO-B inhibitors, GOLD docking, correlation

Abstract

Virtual screening is emerging as a highly applied technique for the search of hits since it significantly reduces the time required for the establishment of novel, effective compounds compared to high-throughput screening. Implementing correlation coefficients to determine if a molecular docking study is robust and reliable has been established as common practice in recent years. The aim of this work was to determine if a relevant pairwise correlation between the scoring functions (ChemPLP, GoldScore, Chemscore and ASP) of the docking software GOLD 5.2 and previously determined experimental data of pyrrole derivatives with MAO-B inhibitory activity could be achieved. In order to optimize the correlation coefficient, we calculated the Pearson’s and Spearman’s coefficients after each docking simulation with all four GOLD 5.2 scoring functions. Thereafter, we varied three changeable parameters – the size of the grid space, the side-chain flexibility and the presence of water molecules in the active site, to perceive if we could obtain better correlation values. The highest R2=0.79 was attained with the following docking settings: scoring function ChemPLP, grid size 12Å and no rotatable side chain residues. This work provides an applicable GOLD 5.2 docking protocol for a future virtual screening of novel MAO-B inhibitors with pyrrole moiety.

References

Altintop, M. D., Sever, B., Osmaniye, D., Sağlık, B. N., & Özdemir, A. (2018). Design, synthesis, in vitro and in silico evaluation of new pyrrole derivatives as monoamine oxidase inhibitors. Archiv der Pharmazie, 351(7), 1800082. doi:10.1002/ardp.201800082

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., . . . Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res, 28(1), 235-242. doi:10.1093/nar/28.1.235

Binda, C., Hubálek, F., Li, M., Edmondson, D. E., & Mattevi, A. (2004). Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Letters, 564(3), 225-228. doi:10.1016/s0014-5793(04)00209-1

Binda, C., Hubálek, F., Li, M., Herzig, Y., Sterling, J., Edmondson, D. E., & Mattevi, A. (2004). Crystal Structures of Monoamine Oxidase B in Complex with Four Inhibitors of theN-Propargylaminoindan Class. Journal of Medicinal Chemistry, 47(7), 1767-1774. doi:10.1021/jm031087c

Binda, C., Li, M., Hubalek, F., Restelli, N., Edmondson, D. E., & Mattevi, A. (2003). Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proceedings of the National Academy of Sciences, 100(17), 9750-9755. doi:10.1073/pnas.1633804100

Bonivento, D., Milczek, E. M., McDonald, G. R., Binda, C., Holt, A., Edmondson, D. E., & Mattevi, A. (2010). Potentiation of Ligand Binding through Cooperative Effects in Monoamine Oxidase B. Journal of Biological Chemistry, 285(47), 36849-36856. doi:10.1074/jbc.m110.169482

C. Basak, S. (2013). Editorial (Recent Developments and Future Directions at Current Computer Aided Drug Design). Current Computer - Aided Drug Design, 9(1), 1-1. doi:10.2174/157340913804998766

Carlson, H. A., Masukawa, K. M., & McCammon, J. A. (1999). Method for Including the Dynamic Fluctuations of a Protein in Computer-Aided Drug Design. The Journal of Physical Chemistry A, 103(49), 10213-10219. doi:10.1021/jp991997z

Ellingson, S. R., Miao, Y., Baudry, J., & Smith, J. C. (2014). Multi-Conformer Ensemble Docking to Difficult Protein Targets. The Journal of Physical Chemistry B, 119(3), 1026-1034. doi:10.1021/jp506511p

Klebe, G. (2006). Virtual ligand screening: strategies, perspectives and limitations. Drug Discovery Today, 11(13-14), 580-594. doi:10.1016/j.drudis.2006.05.012

Korb, O., Olsson, T. S. G., Bowden, S. J., Hall, R. J., Verdonk, M. L., Liebeschuetz, J. W., & Cole, J. C. (2012). Potential and Limitations of Ensemble Docking. Journal of Chemical Information and Modeling, 52(5), 1262-1274. doi:10.1021/ci2005934

Kumar, R., Långström, B., & Darreh-Shori, T. (2016). Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization. Scientific Reports, 6(1). doi:10.1038/srep31247

La Regina, G., Silvestri, R., Artico, M., Lavecchia, A., Novellino, E., Befani, O., . . . Agostinelli, E. (2007). New Pyrrole Inhibitors of Monoamine Oxidase: Synthesis, Biological Evaluation, and Structural Determinants of MAO-A and MAO-B Selectivity. Journal of Medicinal Chemistry, 50(5), 922-931. doi:10.1021/jm060882y

Li, M., Binda, C., Mattevi, A., & Edmondson, D. E. (2006). Functional Role of the Aromatic Cage in Human Monoamine Oxidase B: Structures and Catalytic Properties of Tyr435 Mutant Proteins. In: Worldwide Protein Data Bank.

Lovell, S. C., Word, J. M., Richardson, J. S., & Richardson, D. C. (2000). The penultimate rotamer library. Proteins: Structure, Function, and Genetics, 40(3), 389-408. doi:10.1002/1097-0134(20000815)40:3<389::aid-prot50>3.0.co;2-2

Rao, S., Sanschagrin, P. C., Greenwood, J. R., Repasky, M. P., Sherman, W., & Farid, R. (2008). Improving database enrichment through ensemble docking. Journal of Computer-Aided Molecular Design, 22(9), 621-627. doi:10.1007/s10822-008-9182-y

Rondon, P., Arguello, H., & Torres, R. (2011). Development of a zoned genetic algorithm for semi-flexible protein-ligand docking in drug design. Paper presented at the 2011 6th Colombian Computing Congress (CCC). http://dx.doi.org/10.1109/colomcc.2011.5936321

Silvestri, R., La Regina, G., De Martino, G., Artico, M., Befani, O., Palumbo, M., . . . Turini, P. (2003). Simple, Potent, and Selective Pyrrole Inhibitors of Monoamine Oxidase Types A and B. Journal of Medicinal Chemistry, 46(6), 917-920. doi:10.1021/jm0256124

Tatton, W. G. (1996). Modulation of gene expression rather than monoamine oxidase inhibition: (-)-Deprenyl-related compounds in controlling neurodegeneration. Neurology, 47(Issue 6, Supplement 3), 171S-183S. doi:10.1212/wnl.47.6_suppl_3.171s

Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key Topics in Molecular Docking for Drug Design. 20(18), 4574.

Vlachakis, D. (2018). Introductory Chapter: Molecular Docking - Overview, Background, Application and What the Future Holds. In Molecular Docking: InTech.

Yamada, M. (2004). Clinical Pharmacology of MAO Inhibitors: Safety and Future. NeuroToxicology, 25(1-2), 215-221. doi:10.1016/s0161-813x(03)00097-4

Downloads

Published

2021-10-24

How to Cite

Mateev, E. ., Valkova, I. ., Tzankova, D. ., Georgieva, M. ., & Zlatkov, A. . (2021). OPTIMIZING MOLECULAR DOCKING PROTOCOLS OF PYRROLE CONTAINING MAO-B INHIBITORS THROUGH CORRELATION COEFFICIENTS. Proceedings of CBU in Medicine and Pharmacy, 2, 92-98. https://doi.org/10.12955/pmp.v2.179