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Abstract: The problem of complex multi-component system processing arises in many fields of science and engineering. A 

system can be described in terms of its components, behavior, and interaction. This work proposes a new declarative Turing 

complete “model-oriented” programming paradigm based on the concept of “model-component” - a complex structure with 

well-defined characteristics and behavior, and no external methods. The set of model-components is closed under the union 

operation of model-components into “model-complex”. The proposed approach allows the program to describe the complex 

system and behavior of its components in a declarative way, possesses a higher level of encapsulation than the object-oriented 

paradigm, involves a reduced amount of imperative programming, and is naturally focused on parallel computations. 
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Introduction 

Nowadays, the processing of complex systems plays an important role in many fields of science and 

engineering – from demographics and economics (Belotelov et al., 2008) to biology, physics (Auyang, 

1998), and software development (Jennings, 2001). In many cases, modeling and simulation are the only 

way to analyze the behavior and characteristics of such systems. 

As defined in the paper by Brodsky (2015), a complex system can be viewed as a compound object 

whose parts can be viewed as systems naturally united together according to certain principles or defined 

sets of relations. It means that components of a complex system can be complex systems themselves 

and that the arrangements of system “atoms”, their behavior, and the rules of their interaction are well 

known. Once a formal description of the system is available, computer realization of its simulation 

model is possible (Brodsky, 2013, 2014). Due to the complexity of the problem, it is preferred that the 

design and realization of the model are performed in some automated way to reduce the time spent on 

programming and the number of potential errors.  

Simulation modeling 

One possible approach to simulation modeling is the deductive approach which builds the model from 

top to bottom, starting from general ideas and concepts and gradually moving to more specific cases. In 

software development, this method can be related to object-oriented programming. It allows creating 

new models by building hierarchies of classes or applying class composition to reflect the structure of 

the systems under analysis. However, the organization of computational processes requires the 

application of an imperative paradigm by the developer to create the desired sequence of object method 

calls. 

The inductive approach is the opposite way of solving the problem. It takes advantage of the atomistic 

nature of complex systems where each component has its well-defined fixed characteristics and 

behavior, and the components often may not have a strict hierarchy. This approach works from bottom 

to top, starting from basic primitives and generalizing them into the whole model of a system. In this 

work, we will focus on the inductive approach and show how it can be applied to simulation modeling 

and that it can also be considered as a standalone programming paradigm. 

Proposed approach 

In this work, we propose a new declarative Turing complete “model-oriented” programming paradigm 

which is based on the concepts of “model-component” and “model synthesis” (Brodsky, 2013). A 

model-component is a complex structure with well-defined characteristics and behavior and with no 

external methods. Model-components are used as building blocks to synthesize the model of the whole 

system. This process is feasible since the set of model-components is closed under the union operation 

of model-components into a “model-complex”. Hence, the whole system can be viewed as a single 

model-component, and each model-component can be processed by a common universal procedure. The 
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behavior of each model-component can be described in terms of transitions between its internal states 

and corresponding internal methods, which can be executed in parallel. Such complex knowledge of the 

system and the behavior of its components can be programmed in a declarative way, and only internal 

methods may require limited imperative programming (if convenient). 

Model-component 

A “model-component” of a system is the main concept of the proposed approach. It can be considered 

as a building block of the system which has some characteristics and behavior. Several model-

components can be combined into an aggregated structure called “model-complex”, which can be 

viewed as a model-component itself. Hence the whole system under analysis can be considered as a 

model-component. 

Each model-component has a set of internal and external characteristics and several internal methods. 

Internal characteristics can be considered as the states of the model-component. External characteristics 

are the parameters of the environment that affect the behavior of the model-component. Internal 

characteristics may depend on each other as well as on external characteristics. In contrast to the object-

oriented approach, methods of the model-component cannot be called from the outside. The behavior of 

the model-component is defined by its internal characteristics and corresponding internal methods, and 

it can be changed by the occurrence of events – points where the response from the system is required 

to reflect the changes of the environment (the external characteristics). Several methods can be executed 

simultaneously (by parallel processes) as they are not allowed to change the same characteristics. So-

called “fast” methods occur instantly concerning modeling time and are used to calculate discrete 

characteristics of the system. “Slow” methods require non-zero modeling time and are used to calculate 

continuous characteristics of the system. 

A model of a system can be formally defined as an algorithm 𝐹 which determines the values of internal 

characteristics at the next step of the modeling process (Brodsky & Pavlovsky, 2009): 

 𝑥𝑖+1 = 𝐹(𝑥𝑖 , 𝑎𝑖, 𝛥𝑡), 

where 𝑥𝑖is the vector of internal characteristics at a time 𝑡𝑖, 𝑎𝑖 is the vector of external characteristics at 

a time 𝑡𝑖, 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖 is the modeling time interval. 

Closeness hypothesis 

The existence of such an algorithm means that the system is closed: it is assumed that we have enough 

knowledge of the system to construct its model which can reproduce its dynamics (i.e. its internal 

characteristics 𝑥𝑖) at every point of modeling time 𝑡𝑖 of some time segment [0, 𝑇] if its initial state 𝑥0 

and external characteristics 𝑎𝑖 are known (Brodsky, 2013). 

More formally, the model is called (locally) closed at time point 𝑡𝑖 ∈ [0, 𝑇) if there exists 𝛥𝑡 > 0, 𝑡𝑖 +
𝛥𝑡 ∈ (0, 𝑇] such that: 

1. it is possible to infer from internal characteristics 𝑥(𝑡𝑖) and external characteristics 𝑎(𝑡𝑖) if there 

exists calculable discontinuity (a gap) 𝛥𝑥(𝑡𝑖) at point 𝑡𝑖, 

2. on the interval (𝑡𝑖 , 𝑡𝑖 + 𝛥𝑡] 𝑥(𝑡) is a continuous function of time with value 𝑥(𝑡𝑖)+𝛥𝑥(𝑡𝑖) at 

point 𝑡𝑖. 

Hence, “fast” methods of a model-component are used to calculate the gaps, and “slow” methods are 

used to calculate continuous intervals of 𝑥(𝑡) (Brodsky, 2013). 

The local closeness of a model is the necessary condition of model realization: if there exists a point at 

which even a small-time step is not possible, then it is unclear how to build the model. However, this 

condition is not sufficient (Brodsky 2013, 2014). The counterexample is the fly from the “train fly 

problem” whose speed has two limits at the time point when both trains meet. The additional 

requirement of left continuity of internal characteristics 𝑥(𝑡𝑖) at any time point 𝑡𝑖 ∈ [0, 𝑇) make the 

condition sufficient (Brodsky 2013, 2014). This requirement means that any state of the model, except 

the initial, is the result of its prehistory. 

Based on the described conditions (namely functional dependency of the gap of internal characteristics, 

their continuous evolution, and the need to calculate the gap at each modeling step), a common universal 

procedure for processing any model-component can be defined. 

Events 
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Events are the points of synchronization between methods of the model-component – points at which 

the values of internal and external characteristics require the reaction of the model-component. 

Formally, the event is a function of the model internal and external characteristics 𝛥𝜏 = 𝐸(𝑥, 𝑎) which 

returns the predicted time of its occurrence at the beginning of the simulation step. Occurrence of the 

event at a time 𝑡𝑖 is defined by the equation: 

 𝐸(𝑥𝑖, 𝑎𝑖) = 0. 

Events control the switch between methods of the model-component: for each ordered pair of switchable 

methods {𝑓1, 𝑓2} there exists a unique event 𝐸{𝑓1,𝑓2}that defines the switch. Simultaneous occurrence of 

events 𝐸{𝑓1,𝑓2} and 𝐸{𝑓1,𝑓3} indicates an error in the design of the model. 

Model behavior 

The behavior of a model component is given by a procedure that defines the rules of its simulation 

calculations. It is assumed that at the beginning of every simulation step, all internal characteristics and 

current methods are known, and external characteristics can be observed at any time point. An 

appropriate default modeling time step 𝛥𝑡 is fixed. The procedure implements the following algorithm: 

1. Compute the events which are associated with each current method 𝑓𝑚: 𝛥𝜏𝑖 = 𝐸{𝑓𝑚,𝑓𝑛}(𝑥𝑖, 𝑎𝑖). 

2. If any events corresponding to fast methods occur (i.e. some 𝛥𝜏𝑗 = 0), switch current methods 

accordingly, execute the methods and go to step 1. 
3. If any events corresponding to slow methods occur, switch current methods accordingly. 
4. Calculate the next modeling time step 𝛥𝜏 = 𝑚𝑖𝑛(𝛥𝑡, 𝑚𝑖𝑛𝑖𝛥𝜏𝑖). 

5. Execute all current slow methods with calculated modeling time step 𝛥𝜏, go to step 1. 

The algorithm defines a common universal procedure for the execution process of any model-

component. 

Model-complex 

Several models-components can be combined into a higher-level element called “model-complex”, 

where some model-components may explicitly model external characteristics of some other model-

components. To describe a model-complex it is enough to specify: 

1. which models-components are included in the model-complex, 

2. the number of included model-components of each type, 

3. commutation of models-components inside the model-complex: which internal characteristics 

of which models-components are the external characteristics of model-components. 

When combining model-components into a model-complex, the unambiguity of the computational 

process may be lost. This might happen if, for some reason, several components calculate the same 

internal characteristics of the system under analysis. In this case, a new model-component should be 

included in the model-complex that treats all these characteristics as external characteristics and 

deterministically calculates the only value, which in turn represents a new internal characteristic of the 

complex (Brodsky, 2013). 

Model-complex synthesis 

A model-complex consisting of many models-components can be viewed as a single model-component. 

The union operation of model-components into a model-complex is defined by the following rules 

(Brodsky, 2013): 

1. The internal characteristics of the complex are the union of the internal characteristics of all its 

components. 

2. The processes of the complex are the union of the processes of all its components. 

3. The methods of the complex are the union of the methods of all its components. 

4. The events of the complex are the union of the events of all its components. 

5. The external characteristics of the complex are the union of the external characteristics of all its 

components, except the ones that are explicitly modeled by some component of the complex. 

The fact that the set of model-components is closed under the union operation (i.e. that a model-complex 

can be treated as a model-component) is the basic idea of model synthesis, which allows developers to 

design and implement simulation models of complex multi-component systems of any required nesting 

and guarantees the existence of the aforementioned universal processing procedure. 



INTERNATIONAL CONFERENCE ON INNOVATIONS IN SCIENCE AND EDUCATION (NATURAL SCIENCES AND ICT) 

MARCH 17, 2021, PRAGUE, CZECH REPUBLIC  WWW.ISEIC.CZ, WWW.CBUIC.CZ 

 

66 

Model-oriented paradigm 

The proposed model-oriented approach allows designing and building programs from more aggregate 

elements (model-components) with a higher level of encapsulation than the object-oriented approach: 

methods of a model-component are internal and cannot be called manually; they are always executed 

automatically, thus demonstrating the behavior of the model. An important aspect of the approach is 

that the methods can be executed in parallel at each iteration – it is guaranteed by the fact that the 

methods represent functional dependencies and are not allowed to change the same internal 

characteristics. 

As each synthesized model-complex (and hence the whole system itself) can be viewed as a model-

component, the computational process of model behavior can be implemented as a common universal 

procedure that allows parallelization of most calculations. All this allows creating models of systems 

with deep and complex nesting. 

The model-oriented paradigm splits the process of programming into two main steps: 

1. Declarative programming of model-components and model-complexes. 

2. Functional (or imperative if convenient) programming of internal methods. 

Hence the structure and interaction of components of the system under analysis are programmed in a 

declarative way which makes it possible to significantly reduce the time spent on programming and the 

number of potential errors compared to the imperative approach (Brodsky, 2013). The proposed 

approach paradigm is Turing complete which means that it can be successfully applied to a wider class 

of problems than just modeling of complex systems. 

Turing completeness 

We will show Turing completeness of the proposed model-oriented approach by the realization of 

Turing machine with semi-infinite tape (which is equivalent to Turing machine with finite tape as shown 

by Karpov (2003)) using the concept of model-component. 

1. Set of values 𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑚} of internal characteristic 𝑥𝑞 of the model-component 

represent the set of states of the Turing machine. 

2. 𝑥𝑞 = 𝑞0 is the initial state. 

3. 𝐹 ⊆ 𝑄 is the set of final states. 

4. Internal characteristics 𝑋 = {𝑥0, 𝑥1, . . . } represent the semi-infinite tape. 

5. Internal characteristic 𝑥𝑐 ∈ {0,1, . . . } indicates the current cell of the tape, 𝑥𝑥𝑐
∈ 𝑋. 

6. 𝑥𝑐 = 𝑘, 𝑘 ∈ {0,1, . . . } indicates the initial cell of the tape. 

7. The set 𝛤 of allowed values of internal characteristics 𝑋 represents the set of tape alphabet 

symbols. 

8. 𝑏 ∈ 𝛤 is the blank symbol. 

9. The set 𝛴 ∈ 𝛤\ {𝑏} of allowed values of internal characteristics 𝑋 represent the set of input 

symbols. 

10. The set 𝑋 = {𝑥𝑖, . . . , 𝑥𝑗} ⊂ 𝑋 represents the initialized tape cells, 𝑥𝑏 ∉ 𝑋 are initially blank. 

11. The transition function is represented by the “fast” internal method 𝑓𝑡(𝑥𝑞, 𝑥𝑡 , 𝑋) which changes 

the value of the current cell for the current state 𝑥𝑞 and value 𝑥𝑥𝑐
 of current cell 𝑥𝑐, updates the 

value of the current state and either increments, decrements, or does not modify the index 𝑥𝑐 of 

the current cell. 

12. Execution of transition method 𝑓𝑡 is triggered by an empty event 𝐸𝑓𝑡,𝑓𝑡
 at the beginning of each 

modeling step. 

13. Execution is terminated if the value of the current state characteristic represents some final state, 

i.e. 𝑥𝑞 = 𝑓 ∈ 𝐹 

This construction provides the Turing machine with semi-infinite tape, thus proving Turing 

completeness of the proposed model-oriented programming paradigm. 

Conclusion 

In this paper, a new model-oriented programming paradigm has been proposed. It is a declarative 

approach that possesses a higher level of encapsulation than the object-oriented paradigm, involves a 

reduced amount of imperative programming, and is naturally focused on parallel computations. The 
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proposed approach is Turing complete and is applicable for a wide class of problems, including 

simulation modeling of complex multi-component systems. 

The model-oriented paradigm has been successfully used to implement models of complex systems 

(Brodsky, 2013), and several tools for system simulation have been created (Brodsky & Lebedev, 1991; 

Brodsky, 2010). The scope of future work includes further development of the programming system for 

the model-oriented paradigm and extending its mathematical basis. 
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