FRESHWATER SAPROPEL: BIOLOGICALLY ACTIVE COMPONENTS AND METHODS OF EXTRACTION

Authors

  • Aneka Klavina Riga Stradiņš university, Latvia
  • Agris Auce Riga Stradiņš university, Latvia
  • Ilona Pavlovska Riga Stradiņš university, Latvia
  • Ivars Vanadzins Riga Stradiņš university, Latvia

DOI:

https://doi.org/10.12955/pns.v1.119

Keywords:

Freshwater sapropel, Extraction methods, fulvic acid, humic acid, pharmacy

Abstract

Previously, sapropel has been commonly used in agriculture, cosmetology and medicine in its raw form and there has been no generally accepted method or standard for realizing sapropel extract. However, for sapropel usage in medicine, balneology and pharmacy, it is essential to develop quality criteria for raw sapropel and its extracts.

This review aims at discussing and summing up different techniques for extracting bioactive compounds from sapropel as well as the possibilities of creating quality criteria. This paper covers existing analytical techniques and methodologies; currently, there are few extraction methods using several extractants for obtaining bioactive components from raw sapropel. Different freshwater sapropel types have been described and characterized. Bioactive components in sapropel have been identified and explained. Humic acids and fulvic acids have been identified as the main substances and their extraction methods have been listed. Solid-liquid, ultrasound assisted and supercritical fluid extraction methods have been pointed out as the most suitable. Additionally, analysis and storage conditions of the extracts have been discussed.

There have been found to be no commonly accepted standard methods for sapropel extraction, or for the analysis and characterization of the sapropel extracts. For pharmacological applications, a common approach for the extraction process of active substances from sapropel and the analysis procedures of the extracts need to be established. This review will help equip other researchers with the latest information on this topic.

Author Biographies

Aneka Klavina, Riga Stradiņš university, Latvia

Riga Stradiņš university, Institute of Occupation Safety and Environmental Health

Agris Auce, Riga Stradiņš university, Latvia

Riga Stradiņš university, Institute of Occupation Safety and Environmental Health

Ilona Pavlovska, Riga Stradiņš university, Latvia

Riga Stradiņš university, Institute of Occupation Safety and Environmental Health

Ivars Vanadzins, Riga Stradiņš university, Latvia

Riga Stradiņš university, Institute of Occupation Safety and Environmental Health

References

Aeschbacher, M., Graf, C., Schwarzenbach, R. P., Sander, M. (2012). Antioxidant properties of humic substances. Environmental Science & Technology, 46(9), 4916–4925. https://doi.org/10.1021/es300039h

Alexandrova, G. P., Dolmaab, G., Tserenpil, S., Grishenko, L. A., Sukhov, B. G., Regdel, D., Trofimov, B. A. (2013). A new humic acid preparation with addition of silver nanoparticles. Functions of Natural Organic Matter in Changing Environment (Vol. 9789400756, pp. 783–788). https://doi.org/10.1007/978-94-007-5634-2_142

Almeida, A. R., Jesus, F., Henriques, J. F., Andrade, T. S., Barreto, A., Koba, O., Giang, P.T., Soares, A.M.V.M., Oliviera, M., Domingues, I. (2019). The role of humic acids on gemfibrozil toxicity to zebrafish embryos. Chemosphere, 220, 556–564. https://doi.org/10.1016/J.CHEMOSPHERE.2018.12.133

Beer, A. M., Junginger, H. E., Lukanov, J., Sagorchev, P. (2003). Evaluation of the permeation of peat substances through human skin in vitro. International Journal of Pharmaceutics, 253(1–2), 169–175. https://doi.org/10.1016/S0378-5173(02)00706-8

Beer, A. M., Lukanov, J., Sagorchev, P. (2000). The influence of fulvic and ulmic acids from peat, on the spontaneous contractile activity of smooth muscles. Phytomedicine, 7(5), 407–415. https://doi.org/10.1016/S0944-7113(00)80062-8

Beer, A. M., Sagorchev, P., Lukanov, J. (2002). Isolation of biologically active fractions from the water soluble components of fulvic and ulmic acids from peat. Phytomedicine, 9(7), 659–666. https://doi.org/10.1078/094471102321616490

Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., … Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 100(2018), 82–102. https://doi.org/10.1016/j.trac.2017.12.018

Belzile, N., Joly, H. A., Li, H. (1997). Characterization of humic substances extracted from Canadian lake sediments. Canadian Journal of Chemistry. 75(1), 14-27. https://doi.org/10.1139/v97-003

Booij, K., Achterberg, E. P., Sundby, B. (1992). Release rates of chlorinated hydrocarbons from contaminated sediments. Netherlands Journal of Sea Research, 29(4), 297–310. https://doi.org/10.1016/0077-7579(92)90070-U

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013

Caseldine, C. J., Baker, A., Charman, D. J., Hendon, D. (2000). A comparative study of optical properties of NaOH peat extracts: Implications for humi®cation studies. The Holocene, 10(5), 649–658. https://doi.org/10.1191/095968300672976760

Chunxia, W., Zijian, W., Chunlin, Y., Wenhua, W., An, P. (1996). The evidence for the incorporation of fulvic acid into the bone and cartilage of rats. Science of the Total Environment, 191(3), 197–202. https://doi.org/10.1016/S0048-9697(96)05260-6

De Melo, B. A. G., Motta, F. L., Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. 62, 967-974 Materials Science and Engineering C. https://doi.org/10.1016/j.msec.2015.12.001

De Paolis, F., Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere, 34(8), 1693–1704. https://doi.org/10.1016/S0045-6535(97)00026-X

Dolmaa, G., Tserenpil, S., Ugtakhbayar, O., Shevchenko, S., Kliba, L., Voronkov, M. (2011). Characterization and Organic Compounds in Peloids from Mongolia. Proceedings of the Mongolian Academy of Sciences, 49(4) 3–21. https://doi.org/10.5564/pmas.v0i4.42

Druvietis, I., Springe, G., Urtane, L., Klavins, M. (1998). Evaluation of plankton communities in small highly humic bog lakes in Latvia. Environment International, 24(5–6), 595–602. https://doi.org/10.1016/S0160-4120(98)00038-5

Dujmov, J., Sucevic, P., Antolic, B. (1992). UV-fluorescence spectrophotometric assessment and characterization of dissolved fluorescent matter in coastal water of the central adriatic. Netherlands Journal of Sea Research, 29(4), 291–296. https://doi.org/10.1016/0077-7579(92)90069-Q

Garcia-Villen, F., Sanchez-Espejo, R., Carazo, E., Borrego-Sanchez, A., Aguzzi, C., Cerezo, P., Viseras, C. (2018). Characterisation of Andalusian peats for skin health care formulations. Applied Clay Science, 160, 201–205. https://doi.org/10.1016/j.clay.2017.12.017

Gomes, C., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., … Delgado, R. (2013). Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science, 75–76, 28–38. https://doi.org/10.1016/j.clay.2013.02.008

Hautala, K., Peuravuori, J., Pihlaja, K. (1998). Organic compounds formed by chemical degradation of Lake Aquatic humic matter. Environment International 24, 527-536. https://doi.org/10.1016/S0160-4120(98)00047-6

Herrero, M., Sanchez-Camargo, A. del P., Cifuentes, A., Ibanez, E. (2015). Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC - Trends in Analytical Chemistry, 71, 26–38. https://doi.org/10.1016/j.trac.2015.01.018

Jacob, K. K., Prashob Peter, K. J., Chandramohanakumar, N. (2019). Humic substances as a potent biomaterials for therapeutic and drug delivery system-a review. International Journal of Applied Pharmaceutics, 11(3), 1–4. https://doi.org/10.22159/ijap.2019v11i3.31421

Javanshah, A., Saidi, A. (2016). Determination of Humic Acid by Spectrophotometric Analysis in the Soils. International Journal of Advanced Biotechnology and Research (IJBR), 7, 19–23. Retrieved from http://www.bipublication.com

Khanna, R., Witt, M., Khalid Anwer, M., Agarwal, S. P., Koch, B. P. (2008). Spectroscopic characterization of fulvic acids extracted from the rock exudate Shilajit. Organic Geochemistry, 39(12), 1719–1724. https://doi.org/10.1016/j.orggeochem.2008.08.009

Klavina, A., Auce, A., Vanadzins, I., Silova, A., Dobkevica, L. (2019). Extraction of boilogically active components from freshwater sapropel. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 3, 114. https://doi.org/10.17770/etr2019vol3.4135

Klavins, M., Purmalis, O. (2010). Humic substances as surfactants. Environmental Chemistry Letters, 8(4), 349–354. https://doi.org/10.1007/s10311-009-0232-z

Klucakova, M., Pekar, M. (2005). Solubility and dissociation of lignitic humic acids in water suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252(2), 157–163. https://doi.org/10.1016/j.colsurfa.2004.10.019

Klucakova, M., Veznikova, K. (2017). Micro-organization of humic acids in aqueous solutions. Journal of Molecular Structure, 1144, 33–40. https://doi.org/10.1016/j.molstruc.2017.05.012

Kovalenko, G. A., Perminova, L. V., Rudina, N. A., Maksimova, Y., Maksimov, A. Y. (2016). Sapropel-based supports as novel macroporous carbon-mineral adsorbents for enzymatic active substances. Resource-Efficient Technologies, 2(4), 159–167. https://doi.org/10.1016/j.reffit.2016.09.001

Krivonos, I. O., Plaksin, G. V. (2010). Extraction of Biologically Active Substances from Sapropels with Liquid and Supercritical Carbon Dioxide. Russian Journal of Physical Chemistry, 4(8), 1171–1177.

Krivonos, O. I., Belskaya, O. B. (2018). Extraction of sapropel d 0- and supercritical carbon dioxide. III REGIONAL SCIENTIFIC AND TECHNICAL CONFERENCE “SCIENTISTS OMSKA TO THE REGION", 1, 81-83.

Lamar, R. T., Olk, D. C., Mayhew, L., Bloom, P. R. (2014). A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. Journal of AOAC INTERNATIONAL, 97(3), 721-730. https://doi.org/10.5740/jaoacint.13-393

Leonova, G. A., Bobrov, V. A., Krivonogov, S. K., Bogush, A. A., Bychinskii, V. A., Mal’tsev, A. E., & Anoshin, G. N. (2015). Biogeochemical specifics of sapropel formation in Cisbaikalian undrained lakes (exemplified by Lake Ochki). Russian Geology and Geophysics, 56(5), 745–761. https://doi.org/10.1016/j.rgg.2015.04.006

Li, H., Wang, J., Zhao, B., Gao, M., Shi, W., Zhou, H., … He, J. (2018). The role of major functional groups: Multi-evidence from the binding experiments of heavy metals on natural fulvic acids extracted from lake sediments. Ecotoxicology and Environmental Safety, 162, 514–520. https://doi.org/10.1016/J.ECOENV.2018.07.038

MacCarthy, P. (2001). The principles of humic substances. Soil Science, 166(11), 738–751. https://doi.org/10.1097/00010694-200111000-00003

McDonnell, C., Tiwari, B. K. (2017). Ultrasound: A Clean, Green Extraction Technology for Bioactives and Contaminants. Comprehensive Analytical Chemistry, 76, 111–129. https://doi.org/10.1016/bs.coac.2017.03.005

Meullemiestre, A., Breil, C., Abert-Vian, M., Chemat, F. (2017). Manothermosonication as a useful tool for lipid extraction from oleaginous microorganisms. Ultrasonics Sonochemistry, 37, 216–221. https://doi.org/10.1016/j.ultsonch.2017.01.014

Mirza, M. A., Agarwal, S. P., Rahman, M. A., Rauf, A., Ahmad, N., Alam, A., Iqbal, Z. (2011). Role of humic acid on oral drug delivery of an antiepileptic drug. Drug Development and Industrial Pharmacy, 37(3), 310–319. https://doi.org/10.3109/03639045.2010.512011

Mirza, M. A., Ahmad, N., Agarwal, S. P., Mahmood, D., Anwer, M. K., & Iqbal, Z. (2011). Comparative evaluation of humic substances in oral drug delivery. Results in Pharma Sciences, 1(1), 16–26. https://doi.org/10.1016/j.rinphs.2011.06.001

Morgan, T. J., Herod, A. A., Brain, S. A., Chambers, F. M., Kandiyoti, R. (2005). Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat. Journal of Chromatography A, 1095(1–2), 81–88. https://doi.org/10.1016/j.chroma.2005.07.116

Murthy, N. B. K., Moza, P. N., Hustert, K., Raghu, K., Kettrup, A. (1996). Photolysis of thiabendazole in aqueous solution and in the presence of fulvic and humic acids. Chemosphere, 33(10), 1915–1920. https://doi.org/10.1016/0045-6535(96)00313-X

Nguta, J. M., Appiah-Opong, R., Nyarko, A. K., Yeboah-Manu, D., Addo, P. G. A., Otchere, I., & Kissi-Twum, A. (2016). Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. Journal of Ethnopharmacology, 182, 10–15. https://doi.org/10.1016/j.jep.2016.02.010

Nsengumuremyi, Daniel, Barakova, N.V., Romanov, V.A., Mityukov, A.S., Guzeva, A. V. (2018). The effect of sapropel extracts on microflora and physicochemical parameters of Dried Distillers ’ Grain. Agronomy Research, 16(May), 1457–1465. https://doi.org/10.15159/AR.18.096

Odabasi, E., Gul, H., Macit, E., Turan, M., Yildiz, O. (2007). Lipophilic components of different therapeutic mud species. Journal of Alternative and Complementary Medicine (New York, N.Y.), 13(10), 1115–1118. https://doi.org/10.1089/acm.2007.0504

Orru, M., Ubner, M., Orru, H. (2011). Kolme balneoloogilise potentsiaaliga Eesti turbaala turba keemilised omadused. Estonian Journal of Earth Sciences, 60(1), 43–49. https://doi.org/10.3176/earth.2011.1.04

Pena-Mendez, E. M., Havel, J., Patocka, J. (2005). Humic substances - compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. Journal of Applied Biomedicine, 3(1), 13–24. https://doi.org/10.32725/jab.2005.002

Peuravuori, J., Koivikko, R., Pihlaja, K. (2002). Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Research, 36(18), 4552–4562. https://doi.org/10.1016/S0043-1354(02)00172-0

Rasaee, I., Ghannadnia, M., Baghshahi, S. (2018). Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous and Mesoporous Materials, 264, 240–247. https://doi.org/10.1016/j.micromeso.2018.01.032

Rensburg, C. E. J. van. (2015). The Antiinflammatory Properties of Humic Substances: A Mini Review. Phytotherapy Research, 29(6), 791–795. https://doi.org/10.1002/ptr.5319

Roux, J. M., Lamotte, H., & Achard, J. L. (2017). An Overview of Microalgae Lipid Extraction in a Biorefinery Framework. Energy Procedia, 112, 680–688. https://doi.org/10.1016/j.egypro.2017.03.1137

Rumyantsev, V. A., Mityukov, A. S., Kryukov, L. N., Yaroshevich, G. S. (2017). Unique properties of humic substances from sapropel. Doklady Earth Sciences, 473(2), 482–484. https://doi.org/10.1134/S1028334X17040201

Ryzhova, G. L., Tyunina, M. A., & Dychko, K. A. (2013a). Determination of fatty acids in products of the vibromagnetic treatment of sapropel by chromatography-mass spectrometry. Journal of Analytical Chemistry, 68(8), 736–742. https://doi.org/10.1134/S1061934813080108

Ryzhova, G. L., Tyunina, M. A., & Dychko, K. A. (2013b). Determination of Fatty Acids in Sapropel Products by Chromatography-Mass Spectrometry. Journal of Analytical Chemistry (RUS), 68(8), 808–814. https://doi.org/10.7868/S0044450213080112

Saini, R. K., Keum, Y. S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103. https://doi.org/10.1016/j.foodchem.2017.07.099

Shamia, I. S., Halabi, M. N., El-ashgar, N. M. (2017). Humic Acid Determination in some Compost and Fertilizer Samples. Journal of Natural Studies, 25, 42–50.

Spaccini, R., Cozzolino, V., Di Meo, V., Savy, D., Drosos, M., Piccolo, A. (2019). Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Science of the Total Environment, 646, 792–800. https://doi.org/10.1016/j.scitotenv.2018.07.334

Stankevica, K., Klavins, M. (2014). Sapropel and Its Application Possibilities. Material Science and Applied Chemistry, 29(29), 109. https://doi.org/10.7250/msac.2013.028

Strakhovenko, V. D., Taran, O. P., Ermolaeva, N. I. (2014). Geochemical characteristics of the sapropel sediments of small lakes in the Ob’-Irtysh interfluve. Russian Geology and Geophysics, 55(10), 1160–1169. https://doi.org/10.1016/j.rgg.2014.09.002

Suarez Munoz, M., Melian Rodriguez, C., Gelen Rudnikas, A., Diaz Rizo, O., Martinez-Santos, M., Ruiz-Romera, E., … Gonzalez-Hernandez, P. (2015). Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Applied Clay Science, 104, 36–47. https://doi.org/10.1016/j.clay.2014.11.029

Trofimova, E. S., Zykova, M. V, Ligacheva, A. A., Sherstoboev, E. Y., Zhdanov, V. V, Belousov, M. V, Dygai, A. M. (2017). Influence of humic acids extracted from peat by different methods on functional activity of macrophages in Vitro. Bulletin of Experimental Biology and Medicine, 162(6), 741–745. https://doi.org/10.1007/s10517-017-3702-5

Vanags, R. (2015). Investigation of sapropel extraction technical tools. Engineering for Rural Developmen, 14, 151-154.

Vilkhu, K., Mawson, R., Simons, L., Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry - A review. Innovative Food Science and Emerging Technologies, 9(2), 161–169. https://doi.org/10.1016/j.ifset.2007.04.014

Winkler, J., Ghosh, S. (2018). Therapeutic Potential of Fulvic Acid in Chronic Inflammatory Diseases and Diabetes. Journal of Diabetes Research, 1-7. https://doi.org/10.1155/2018/5391014

Wollina, U. (2009). Peat: A natural source for dermatocosmetics and dermatotherapeutics. Journal of Cutaneous and Aesthetic Surgery, 2(1), 17. https://doi.org/10.4103/0974-2077.53094

Xu, C. C., Wang, B., Pu, Y. Q., Tao, J. S., Zhang, T. (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chinese Journal of Natural Medicines, 15(10), 721–731. https://doi.org/10.1016/S1875-5364(17)30103-6

Zanin, L., Tomasi, N., Zamboni, A., Sega, D., Varanini, Z., Pinton, R. (2018). Water-extractable humic substances speed up transcriptional response of maize roots to nitrate. Environmental and Experimental Botany, 147, 167–178. https://doi.org/10.1016/j.envexpbot.2017.12.014

Downloads

Published

2020-11-16

How to Cite

Klavina, A. ., Auce, A. ., Pavlovska, I. ., & Vanadzins, I. . (2020). FRESHWATER SAPROPEL: BIOLOGICALLY ACTIVE COMPONENTS AND METHODS OF EXTRACTION. Proceedings of CBU in Natural Sciences and ICT, 1, 37-46. https://doi.org/10.12955/pns.v1.119