MICROBIAL BIOMASS CARBON AND ENZYMATIC DEGRADATION OF CARBOHYDRATES BY APPLICATION OF VERMICULITE TO RECLAIMED SUBSTRATES

Authors

  • Boyka Z. Malcheva University of Forestry, Bulgaria

DOI:

https://doi.org/10.12955/pns.v1.120

Keywords:

reclaimed substrates, vermiculite, microbial biomass, enzymes

Abstract

A vegetation experiment was carried out with different amounts of vermiculite mixed with humus depot substrates, tailings pond and mine, in different proportions, and with an application of mineral fertilization and liming. Biomass carbon of microbial origin has the highest values after the addition of 10% vermiculite, simultaneous application of fertilization and liming, and alone fertilization, compared to controls, without ameliorants. The activity of the studied enzymes - cellulase, amylase, invertase and catalase increased with increasing concentration of vermiculite, as well as in the combined application of fertilization and liming. The values of microbial biomass carbon and enzymes are highest in the variants with substrates from the mine.

Author Biography

Boyka Z. Malcheva, University of Forestry, Bulgaria

University of Forestry, Sofia, Bulgaria

References

Baldrian, P., Trögl, J., Frouz, J., Šnajdr, J. et al. (2008). Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry 40(9), 2107-2115. https://doi.org/10.1016/j.soilbio.2008.02.019

Bi, Y.L., Wu, W.Y., Liu, Y.P. (2007). Application of arbuscular mycorrhizas in land reclamation of coal spoil heaps. Acta Ecol Sin; 27(9), 3738–43.

Burns, R.G., De Forest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., et al. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol Biochem 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

Cai, Y., Peng, Ch., Qiu, S., Li, Y. (2011). Dichromate Digestion–Spectrophotometric Procedure for Determination of Soil Microbial Biomass Carbon in Association with Fumigation–Extraction. Communications in Soil Science and Plant Analysis 42(22), 2824-2834. https://doi.org/10.1080/00103624.2011.623027

Cele, E.N. & Maboeta, M. (2016). Response of soil enzyme activities to synergistic effects of biosolids and plants in iron ore mine soils. Int. J. Environ. Sci. Technol., 13, 2117-2126. https://doi.org/10.1007/s13762-016-1043-y

CHEN, Z., YANG, G., SUN, Q. (2009). EFFECTS OF BIO-CRUST ON SOIL MICROBIAL BIOMASS AND ENZYME ACTIVITIES IN COPPER MINE TAILINGS. PUBMED, 20(9), 2193-8.

Chodak, М., Niklińska, M. (2012). Development of Microbial Biomass and Enzyme Activities in Mine Soils. Pol. J. Environ. Stud., 21(3), 569-577.

De Freitas, E.D., De Almeida, H.J., Vieira, M.G.A. (2017). Binary adsorption of zinc and copper on expanded vermiculite using a fixed bed column. Appl. Clay Sci., 146, 503-509. https://doi.org/10.1016/j.clay.2017.07.004

Dimitriu, P.A., Prescott, C.E., Quideau, S.A., Grayston, S.J. (2010). Impact of reclamation of surface-mined boreal forest soils on microbial community composition and function. Soil Biol Biochem 42, 2289–2297. https://doi.org/10.1016/j.soilbio.2010.09.001

Doni, S., Macci, C., Masciandaro, G. & Ceccanti, B. (2012). IEF technique to study the β-glucosidase-humic complexes in organic and mineral amended soils. In: Soil enzymology in the recycling of organic wastes and environmental restora¬tion (Eds Trasar-Cepeda, C., Hernandez, T., Garcia, C., Rad, C., Gonzalez-Carcedo, S.). Springer-Verlag, Dordrecht, London, New York. https://doi.org/10.1007/978-3-642-21162-1_3

Gil-Sotres, F., Trasar-Cepeda, C., Leirys, M.C., Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877. https://doi.org/10.1016/j.soilbio.2004.10.003

Gradova, N., Babusenko, E., Gornova, I. (2004). Laboratornyy praktikum po obshchey mikrobiologii [Laboratory Workshop on General Microbiology], publisher: „DeLi Print”, Moscow, 144p.

Harris, J.A. (2003). Measurements of the soil microbial community for estimating the success of restoration. Eur. J. Soil Sci. 54, 801. https://doi.org/10.1046/j.1351-0754.2003.0559.x

Khaziev, F. 1976. Fermentativnaya aktivnost' pochv [Enzymatic activity of soils], publisher: „Nauka”, Moscow, 180 p.

Kuimei, Q., Wang, L., Ningning, Y. (2012). Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. International Journal of Mining Science and Technology 22, 553–557. https://doi.org/10.1016/j.ijmst.2012.01.019

Kwak, J., Chang, S., Naeth, M., Schaaf, W. (2015). Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils. PLoS One, 10(11): e0143857. https://doi.org/10.1371/journal.pone.0143857

Ladd, J.N., Amato, M., Grace, P.R., van Veen, J.A. (1995). Simulation of C-14 turnover through the microbial biomass in soils incubated with C-14-labeled plant residues. Soil Biol Biochem 27, 777–783. https://doi.org/10.1016/0038-0717(94)00243-T

Malandrino, М., Abollino, O., Buoso, S., Giacomino, A., Gioia, C., Mentasti, E. (2011). Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere 82, 169–178. https://doi.org/10.1016/j.chemosphere.2010.10.028

Petrova, R. (2009). Resheniya za rekultivatsiya i fitoremediatsiya na degradirani pochvi – medno khvostokhranilishte „Medet” [Decisions for rehabilitation and phytoremediation of degraded soils – copper tailling pond ‘Medet’]. Forestry ideas 2(38): 68-77.

Petrov, P. (2019). Podkhodi pri rekultivatsiyata na Iztochno nasipishte, Rudnik „Elatsite“ [Approaches to the reclamation of Eastern embankment, Ellatzite Mine], publisher: „Avangard prima”, 155p. ISBN 978-619-239-295-6.

Qiang, L., Qingjing, H., Chaolan, Zh., Zhenjiang, J. (2018). Effects of Pb, Cd, Zn, and Cu on Soil Enzyme Activity and Soil Properties Related to Agricultural Land-Use Practices in Karst Area Contaminated by Pb-Zn Tailings. Pol. J. Environ. Stud., 27(6), 2623–2632. https://doi.org/10.15244/pjoes/81213

Stefanova, V., Petrov, P. (2019). Soil development and properties of microbial biomass succession in reclaimed sites in bulgaria. International conference on innovations in science and education march 20-22, 2019, Prague, Czech republic, 1-9. https://doi.org/10.12955/cbup.v7.1492

Stefanova, V., Petrov, P., Zheleva, E. 2019. Assessment of the soil formation process in reclaimed terrains in Bulgarian copper mine. ICIR EUROINVENT 2019 IOP Conf. Series: Materials Science and Engineering. https://doi:10.1088/1757-899X/572/1/012107

Sis, H., Uysal, T. (2014). Removal of heavy metal ions from aqueous medium using Kuluncak (Malatya) vermiculites and effect of precipitation on removal. Appl. Clay Sci., 1-8. https://doi.org/10.1016/j.clay.2014.03.018

Veen, J.A. & Kuikman, P.J. (1990). Soil structural aspects of decomposition of organic-matter by microorganisms. Biogeochemistry 11: 213–233. https://doi.org/10.1007/BF00004497

Wang, L.P., Qian, K.M., He, S.L., Feng, B. (2009). Fertilizing effect of arbuscular mycorrhizal fungi on coal mine complex substrate. Procedia Earth Planet Sci, 1(1):1101–6. https://doi.org/10.1016/j.proeps.2009.09.169

Wang, Y., Li, Y., Wang, H., Guo, J. et al. (2008). Effects of vegetation restoration pattern on microbial quantity and enzyme activity in iron tailings. CJE, 27(10), 1826-1829.

Downloads

Published

2020-11-16

How to Cite

Malcheva, B. (2020). MICROBIAL BIOMASS CARBON AND ENZYMATIC DEGRADATION OF CARBOHYDRATES BY APPLICATION OF VERMICULITE TO RECLAIMED SUBSTRATES. Proceedings of CBU in Natural Sciences and ICT, 1, 47-53. https://doi.org/10.12955/pns.v1.120