STUDY OF THE CORRELATION BETWEEN THE CONTENT OF NANOOBJECTS AND SURFACE FEATURES

Authors

  • Natalia Kamanina Vavilov State Optical Institute, St.- Petersburg, Russia; St.-Petersburg Electrotechnical University (“LETI”), St.-Petersburg, Russia; Kurchatov Institute - Nuclear Physics Institute, St.-Petersburg-Gatchina,

DOI:

https://doi.org/10.12955/pns.v2.152

Keywords:

Organic materials, surface relief, sensitization, fullerenes and nanotubes content, polyvinyl alcohol, polyimide, wetting angle

Abstract

It is well known that at the present time two basic aspects of a material’s nano-objects sensitization should be considered. The first aspect relates to the change of the material’s basic physical-chemical properties when the concentration of the nanoobjects in the material’s body is varied. The second aspect is in regard to the modification of surface properties on the content of the nanoobjects in the material’s body. In the current paper the correlation between the concentration of the nanoobjects and wetting phenomena of the material’s surface is considered. Different experimental instruments and supporting models are presented with good coincidence.

References

Krätschmer, W., Fostiropoulos, K., Huffman, D.R. (1990a).The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem. Phys. Lett., 170(2-3), 167-170.

Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R. (1990b). Solid C60: a new form of carbon. Nature, 347, 354-358.

Liu, Huimin, Taheri, B., Weiyi, Jia. (1994).Anomalous optical response of C60 and C70 in toluene. Phys. Rev. B, 49(15), 10166-10169.

Couris, S., Koudoumas, E., Ruth, A. A., Leach, S. (1995). Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution. J. Phys. B: At. Mol. Opt. Phys., 28, 4537-4554.

Brabec, C.J., Padinger, F., Sariciftci, N.S., Hummelen, J.C. (1999). Photovoltaic properties of conjugated polymer/ methanofullerene composites embedded in a polystyrene matrix. Journal of Applied Physics, 85(9), 6866-6872

Belousov, V.P., Belousiva, I.M., Gavronskaya, E.A., Grigor’ev V.A., Danilov, O.B., Kalintsev, A.G., Krasnopolskij V.E., Smirnov, V.A., Sosnov E.N. (1999). About optical limiting mechanisms in the fullerene-containing media. Optics and Spectroscopy, 87(5), 845-852.

Kamanina, N.V. (2002). Mechanisms of optical limiting in -conjugated organic system: fullerene-doped polyimide. Synthetic Metals, 127(1-3), 121-128. DOI: 10.1016/S0379-6779(01)00598-7.

Robertson, J. (2004). Realistic applications of CNTs. Materials Today. 7(10), 46-52.

Namilae, S., Chandra, N., Shet, C. (2004). Mechanical behavior of functionalized nanotubes. Chemical Physics Letters, 387(4-6), 247–252.

Ould-Moussa, N., Blanc, Ch., Zamora-Ledezma, C., Lavrentovich, O.D., Smalyukh, I.I., Islam, M.F., Yodh, A.G., Maugey, M., Poulin, P., Anglaret E., M. Nobili. (2013). Dispersion and orientation of single-walled carbon nanotubes in a chromonic liquid crystal. Liquid Crystals, 40(12), 1628-1635, DOI:10.1080/02678292.2013.772254.

Liu, S.H., Qian, X.F., Yin, J., Xi, H.A., Huang, Z.H., Zhu, Z.K. (2003). Fabrication of CdS nanocrystals embedded in copolymer matrix by an in situ simultaneous copolymerization-sulfidation technique. Materials Science and Engineering B, 98(2), 99-103. doi:10.1016/S0921-5107(02)00353-7

Babaev, A.A., Parfenov, P.S., Onishchuk, D.A., Dubavik, A., Cherevkov, S.A., Rybin, A.V., Baranov, M.A., Baranov, A.V. Litvin, A.P., Fedorov, A.V. (2019). Functionalized rGO Interlayers Improve the Fill Factor and Current Density in PbS QDs-Based Solar Cells. Materials (Basel, Switzerland), 12(14), 4221, 10 pages. doi:10.3390/ma12244221

Rozhkova, N.N., Gribanov, A.V., Khodorkovskii, M.A. (2007). Water mediated modification of structure and physical chemical properties of nanocarbons. Diamond & Related Materials, 16(12), 2104–2108.

Sheka, E.F., Rozhkova, N.N. (2014). Shungite as the natural pantry of nanoscale reduced graphene oxide. International Journal of Smart and Nano Materials, 5(1), 1-16, doi: 10.1080/19475411.2014.885913

Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., Paletko, P., Boguslawski, J., Lipinska, L, and Abramski, K.M. (2012). Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Optics Express, 20(17), 19463-19473.

Abbaspour, M., Pourabbas, B., Azimi, M., Abdeali, G., Asgari, A. (2017). Solid-state supercapacitor based on breath figured polymethylmethacrylate deposited by graphene: the effect of electrode surface. J Mater Sci: Mater Electron, 28, 14121-14130, doi 10.1007/s10854-017-7265-z

Kamanina, Natalia V. (2019a). Nanoparticles doping influence on the organics surface relief. Journal of Molecular Liquids, 283, 65–68.

Kamanina, Natalia. (2019b). Liquid crystal materials orientation using new approach. Proceed. of CBU International conference on innovations in science and education, March 20-22, Prague, Czech Republic, 933-937, doi: 10.12955/cbup.v7.147

Kamanina, Natalia. (2020a). Some aspects of the materials’ optical limiting features. Proceedings of CBU in Natural Sciences and ICT, 1, 33-36.2020, Prague, Czech Republic, doi: https://doi.org/10.12955/pns.v1.118

Kamanina, N.V., Likhomanova, S.V., Vasilyev, P.Ya., Studeonov, V.I., Chernozatonskii, L.A., Vaganov, V.E., Mishakov, I. V. (2011). Surface Properties of Thin-Film Polarizers Modified by Carbon Nanostructures. Tech. Phys.Lett. 37(12), 1165–1167.

Ramamurty, U., Rao C.N.R. (2009). Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20(12), 125705, 5 pages. doi: 10.1088/0957-4484/20/12/125705

Kamanina, N.V., Studeonov, V.I., Tkachev, A.G. (2020b). Thin-film light polarizers: media bulk structuring and surface modifying. Liq. Cryst. and their Appl. 20 (4), 78-83.

Kamanina, N.V., Serov, S.V., Shurpo, N.A., Likhomanova, S.V., Timonin, D.N., Kuzhakov, P.V., Rozhkova, N.N., Kityk, I.V., Plucinski, K. J., Uskokovic, D. P. (2012). Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J Mater Sci: Mater Electron, 23(8), 1538-1542, doi 10.1007/s10854-012-0625-9.

Downloads

Published

2021-10-24

How to Cite

Kamanina, N. . (2021). STUDY OF THE CORRELATION BETWEEN THE CONTENT OF NANOOBJECTS AND SURFACE FEATURES . Proceedings of CBU in Natural Sciences and ICT, 2, 47-51. https://doi.org/10.12955/pns.v2.152